MODIS Science Team Meeting 2012

Remote sensing of ice crystal asymmetry parameter

Bastiaan van Diedenhoven

(Columbia University, NASA GISS)

Brian Cairns, Ann Fridlind and Andrew Ackerman

Thanks to Tim Garrett, Ping Yang, Bryan Baum, Igor Geogdzhayev, MAS team

Ice clouds in climate models

- Climate models need improve representation of ice cloud
 - Macrophysical properties
 - Microphysical properties
 - Optical properties

Cloud reflection is function of:

- •Optical thickness **T**
- •Single scattering albedo ω_0 (R_{eff})
- •Asymmetry parameter **9**

Global ice cloud properties

- Visible + SWinfrared reflectances:
 - Optical thickness
 - R_{eff}
- Nakajima-King method
- Global asymmetry parameter unconstrained

Maddux et al.,

JAOT 2010

Ice cloud asymmetry parameter:

Models: 0.6-0.95

In situ: ~ 0.75

Required accuracy: 0.01-0.04 (Vogelmann & Ackerman, 1995)

Nakjima-King method depends on asymmetry parameter

- Assuming lower g leads to
 - Larger R_{eff}
 - Lower optical thickness

Ice crystal asymmetry parameter

- Ice crystal g mainly depends on
 - Shape (mostly aspect ratio)
 - Microscopical Roughness/impurity

Complex vs simple ice crystals

• Phase matrix $\mathbf{P}_{\text{complex}} \approx \mathbf{P}_{\text{components}}$ (Fu 2007; Um & McFarquhar 2007; 2009)

Polarization dependence on aspect ratio & roughness

- Polarization contains info about aspect ratio and roughness
- Single scattering features largely conserved in multi-directional polarized reflectance measurements (as measured by e.g, POLDER)

Retrieval procedure

- Use columns/plates as proxies for complex crystals
- LUT of polarized reflectances for columns/plates
 - $\overline{}$ 51 aspect ratios 0.02 50
 - 15 roughness values ($\delta = 0 0.7$)
- Find best fit to measured polarized reflectances
 - 100 165 scattering angle in examples
- Asymmetry parameter of best-fit hexagon is retrieved g

Simulated data test

- Simulated data:
 - Complex ice optical properties (Yang et al.)
 - 20 different size distributions
 - 3 roughness degrees
- Retrieved g₀
 - Within 5%
 - Mean bias: 0.004
 - Standard deviation:0.02

More evaluation of method with simulated measurements on poster

CRYSTAL-FACE: Research scanning polarimeter (RSP)

- Airplane version of Glory-APS (launch failed March 2011)
- Total and polarized reflectances
- 9 bands, visible to SWIR
- 152 viewing angles ±60°

Aircraft flight tracks: 29 July 2002

http://www-angler.larc.nasa.gov/crystal/fltdays/all_072902/disp2002210.html

Application to RSP: 29th July 2002

- MODIS collection 5 algorithm (g~0.83)
- Good comparison T
- RSP $R_{eff} \sim 2-8 \mu$ m higher due to lower $g \sim 0.78$
- RSP $\lambda = 1.6 \mu$ m channel failed

Comparison with CIN in situ measurements (Tim Garrett)

Comparison with in situ

- $\Delta g \sim 0.04 0.07$
- $\Delta R_{\rm eff} \sim \text{factor } 3-4$
 - cf. Heymsfield et al 2007
- CIN uncertainties:
 - Light leak correction
 - Calibration
 - Ice shattering on probe

Aircraft flight tracks: 11 July 2002

http://www-angler.larc.nasa.gov/crystal/fltdays/all_071102_new/disp2002192.html

Application to RSP: 11th July 2002

- Good comparison with MAS T and Reff retrievals (collection 4)
- Asymmetry parameter g~0.76–0.78

CIN in situ measurements

CIN vs MAS & RSP

- Asymmetry parameter
 - Good comparison CIN vs RSP (but CIN-Citation sampling cloud base)
- Effective radius
 - CIN factor 2-3 lower at top
 - cf. Heymsfield et al 2007

Aircraft flight tracks: 21 July 2002

http://www-angler.larc.nasa.gov/crystal/fltdays/all_072102/disp2002202.html

CIN vs RSP 21 July 2002

- g = 0.76 0.78
- $\Delta g \sim 0.04 (5\%)$
- $ightharpoonup \Delta R_{\rm eff} \sim {
 m factor} 1.5-2$

Preliminary conclusions from CRYSTAL-FACE

- g = 0.76-0.8
- No obvious correlation with R_{eff} , \mathcal{T} , Temp., etc.
- Short columns (AR=1-2) dominate
- Roughness ~0.3-0.5
- RSP g is biased high, up to 0.07 compared to CIN
- RSP R_{eff} and optical thickness compares well to MAS
- CIN R_{eff} is biased low compared to MAS and RSP
 - Factor 1.5-4, depending on case

Application to POLDER-PARASOL in A-train (van Diedenhoven et al., JAS, in press)

- Combined MODIS-POLDER data during TWP-ICE campaign
- $\tau_{\text{cloud}} > 5 \text{ only}$
- AR~0.7 crystals in cold clouds, g=0.74 (homogeneous ice formation?)
- More extreme AR in warmer clouds, g=0.84 (heterogeneous ice formation?)

Future work

- Apply to more RSP data for validation
 - CRYSTAL-FACE
 - PODEX campaign (California, May-June 2012)
 - SEAC⁴RS campaign (Southeast Asia, Aug.-Sept. 2012)
- Investigate error sources using cloud-resolving model
 - Inhomogeneous scenes
 - 3D radiative transfer effects
 - Vertical structure (multi-layered clouds)
- Global POLDER-MODIS data
 - Filter/aggregate data
 - Validation
- Advise MODIS team on ice crystal model to use

More on poster!

